备注

戴厚良、马洪琪、顾大钊,三篇院士署名文章,聚焦这一主题…

日前,国家能源局、科学技术部联合印发《“十四五”能源领域科技创新规划》,提出“十四五”时期能源科技创新的发展目标,为下一步能源领域科技发展指明了方向。此次,小业整理发布三位院士署名文章,围绕《规划》内容,从水电工程智能化、石油化工、能源低碳转型等领域进行全方位深度解读。

戴厚良:加快实现高水平科技自立自强 支撑引领石油化工行业高质量发展

《“十四五”能源领域科技创新规划》(以下简称《规划》)站在新的历史方位,紧密围绕国家能源发展重大需求和能源技术革命重大趋势,规划了未来五年能源领域的科技创新蓝图,实现了与国家科技中长期规划及“十四五”现代能源体系规划等专项规划的有机衔接,是推动能源技术革命、实现能源领域高水平科技自立自强的行动指南和纲领性文件。

一、充分认识《规划》的科学性、指导性和针对性

《规划》系统总结分析了我国能源科技发展成就和世界能源科技创新形势。当今世界百年未有之大变局加速演进,全球科技创新进入密集活跃期,新一轮科技革命和产业变革对全球经济结构产生深刻影响。《规划》深入分析了世界各国科技创新的发展态势以及全球能源技术创新四个新动向新趋势,从五个方面系统总结了我国能源领域科技创新取得的重要成就,进一步坚定了能源企业把握大势、直面问题、迎难而上,瞄准世界能源科技前沿,切实肩负起推动新时代能源科技创新、引领能源革命、建设世界科技强国的信心和决心。

《规划》科学谋划了我国能源科技发展的目标及定位。《规划》明确了引领以新能源为主体的新型电力系统建设、支撑在确保安全的前提下积极有序发展核电、推动化石能源清洁低碳高效开发利用、促进能源产业数字化智能化升级、健全能源科技创新体系等六大目标,将能源产业高质量发展的基点牢固建立在科技进步和创新驱动上。

《规划》精准部署了我国能源科技发展的重点任务。聚焦保障能源安全、促进能源转型和引领能源革命等重大需求,以完善能源技术创新体系为重点,以“短板”技术攻关和“前瞻性”技术创新为主线,以集中攻关一批、示范试验一批、应用推广一批“三个一批”为路径,围绕先进可再生能源、新型电力系统、安全高效核能、绿色高效化石能源开发利用、能源数字化智能化等方面确定了集中攻关、示范试验和应用推广任务,必将有力指导和推动能源行业加快关键核心技术攻关和成果产业化步伐。

《规划》明确提出了保障我国能源科技发展的政策措施。以推动能源领域科技创新为主线,以完善科技创新协同机制和创新平台体系为基础,以统筹部署集中攻关、示范试验和应用推广技术为带动,以自主创新和开放合作为依托,提出了创新机制、平台建设、成果应用、创新主体、标准管理、资金支持、国际合作、人才培养等八个方面的一揽子政策举措,为我国“十四五”能源领域科技自立自强构筑了坚实保障。

二、准确把握《规划》落实中的核心要求

一是突出能源安全在能源转型中的首要地位不动摇。能源安全是关系国家经济社会发展的全局性、战略性问题,对国家繁荣发展、人民生活改善、社会长治久安至关重要。在碳达峰、碳中和目标下,全球能源加快转型,尽管我国能源自给率在80%以上,但人均能源资源拥有量相对较低,原油、天然气对外依存度较高,新能源发展不稳定不确定性依然较大。这就要求我们全面落实《规划》部署,加快推进能源技术革命,努力实现关键核心技术自主可控,把创新主动权、发展主动权牢牢掌握在自己手中,不断提高能源自主供给能力。

二是突出科技创新在能源发展中的核心地位不动摇。科技创新是实现能源绿色低碳发展的第一动力,世界各主要国家均将科技创新视为推动能源转型的重要突破口。与世界能源科技强国相比,我国能源科技创新能力依然不强,成为制约能源产业高质量发展的瓶颈。这就要求我们全面落实好《规划》部署,坚持事业发展科技先行,着力攻克关键核心技术,全力以赴突破“短板”技术装备,加快形成“长板”技术新优势,快速推进前瞻性、颠覆性技术发展,进一步健全科技创新体系,不断开创能源领域科技自立自强新局面,以科技创新支撑引领能源产业高质量发展。

三是突出企业在科技创新体系中的主体地位不动摇。企业是创新的主体,是推动创新创造的主力军。落实好《规划》的目标部署和重点任务,需要能源企业自觉履行高水平科技自立自强的使命担当,坚持“四个面向”,围绕产业链部署创新链、依靠创新链提升价值链,按照“快速突破”和“久久为功”两个层面,加快科技创新步伐,积极抢占科技竞争制高点,真正成为技术创新决策、研发投入、科研组织和成果转化的主体。特别是国有重要能源骨干企业,要勇挑重担、敢打头阵,勇当各自领域原创技术“策源地”和现代产业链“链长”,全力打造世界一流创新型企业,努力成为国家战略科技力量的重要组成部分。

三、认真落实《规划》部署,全力推进石油化工科技高水平自立自强

在石油化工科技方面,《规划》围绕油气安全保障供应和其他可再生能源利用技术,重点部署了特种专用橡胶、高端润滑油脂、分子炼油与分子转化平台技术等一系列炼化技术,以及生物质能转化与利用技术,需要能源企业特别是石油化工企业全力推动落实,尽快取得突破,更好发挥科技创新在石油化工行业高质量发展中的支撑引领作用。

(一)加快突破石化下游高端产品关键核心技术。当前,我国石化工业已进入高质量发展阶段,但仍然存在炼油产能过剩、大宗石化产品占比较大、高端和高附加值产品占比较低、碳减排难度大等问题。迫切需要立足石化产业链现有的基础和优势,找准产业链供应链上的堵点、断点,坚定不移地稳链、补链、强链,加快突破特种专用橡胶、高端润滑油脂、高性能合成树脂等关键核心技术,加快打造石油化工领域原创技术“策源地”和现代产业链“链长”,为建设制造强国、能源强国筑就坚实保障。

特种专用橡胶技术亟待提高自主可控水平。氢化丁腈、梯度阻尼橡胶、长链支化稀土顺丁橡胶等特种橡胶关键核心技术的自主可控,既可为产业增效转型赋能,又可为制造强国夯实根基。

高端润滑油脂技术迫切需要集中攻关。随着我国航空航天、轨道交通、海洋工程、机器人、核岛及特种船舶等新兴产业不断发展,配套用高端润滑油脂需求快速增长,且新兴产业发展对润滑油脂的性能也提出越来越高的要求。围绕国家航空航天、高铁、船舶等产业发展,《规划》重点布局了多元醇酯、烷基萘、硅烃、低聚抗氧剂等高端润滑材料构效关系和高选择性合成技术研究,开展研制硅烃基空间润滑油、高性能航空涡轮发动机润滑油、超温宽通用航空润滑油脂等高尖端润滑油脂产品研究,推动高端润滑油脂、多元醇酯、长链烷基萘等基础油工业化步伐,为其工业级批量化试生产建立条件。

高性能合成树脂关键技术亟须突破。我国聚烯烃弹性体消费量占全球总量的25%左右,且市场需求仍在不断扩大;超洁净化聚烯烃材料是国家医药、食品等重点行业发展的关键材料之一;环烯烃共聚物作为一种具有高透明性、低电介常数、优良耐热耐化学性、熔体流动性及尺寸稳定性的高端工程塑料,特别适合显示器、镜头等光学器件及医疗器具领域应用。

(二)加快突破生物炼制关键核心技术。理论上90%的传统石油化工产品都可以通过生物化工过程获得。在生物质能的各种利用形式中,生物液体燃料和生物天然气目前应用最为广泛。在我国油气对外依存度居高不下的形势下,以生物液体燃料和生物天然气为代表的生物质能可作为石油、天然气的重要补充,在保障国家能源安全中发挥积极作用。

(三)加快突破碳捕集及利用技术。碳捕集、利用及封存(CCUS)是石化工业实现碳中和目标的兜底技术,是全球公认的最具商业化应用潜力的碳减排技术之一。《规划》对CCUS技术作出统筹部署,从全产业链角度系统梳理了制约CCUS技术发展的关键核心问题。我国石化工业直接碳排放量约10亿吨二氧化碳当量,占全国总温室气体排放8%左右,排放强度较大、部分排放浓度较高,是减排的重点。当前,制约CCUS技术规模应用的主要因素是成本,其核心是低成本高效关键核心技术与设备的突破,同时要加强百万吨级CCUS全流程示范项目建设,为商业化应用提供技术和工程支撑。

(四)加快突破传统炼厂转型升级及智能化应用技术。进入新发展阶段,传统炼厂必将随着新能源、新技术、新模式、新业态的出现加快转型升级步伐。《规划》部署了分子炼油与分子转化平台技术、数字化智能化技术,推动传统炼厂的根本性变革。分子炼油与分子转化平台技术将增强传统炼厂产品结构调变能力。在分子水平认识石油、使用石油,实现对石油烃类分子的定向转化,可从本质上实现原油高效转化生产化学品。但目前对分子炼油的机理还不够明晰,在分子表征、先进分离、模拟放大、分子重构和智能控制方面还存在技术瓶颈。突破这些关键技术对于构建新型的石油分子转化平台,实现传统炼厂多产化工原料或多产航煤、兼顾化工原料具有重大意义。当今世界正进入数字经济快速发展的时期,数字化智能化技术将实现科研、设计、生产、经营与决策的一体化、智能化和绿色化发展,搭建起炼化企业资源全流程价值链优化平台以及基于泛在感知、生产操作监控、运营决策与执行的智能运营平台,开展基于工业互联网平台的智能炼厂工业应用示范,培育形成基于用户、数据、创新驱动的新商业模式、新生产方式和新产业生态,为推进数字化转型智能化发展、建设能源与化工创新高地提供有力支撑。

马洪琪:全面推进水电工程智能化

一、《规划》编制的背景、意义及重点任务

21世纪以来,以三峡、南水北调工程为标志,中国水电开发进入了自主创新、引领发展的新阶段,先后建成了龙滩、水布垭、溪洛渡等工程,这一阶段我国更加关注巨型工程和超高坝的安全,注重环境保护,建设技术不断刷新世界纪录。

《“十四五”能源领域科技创新规划》(以下简称《规划》),分析了世界和我国能源科技发展形势,提出了发展目标和重点任务,建议了相关保障措施和支持政策等,抓住了能源领域的技术关键和行业痛点。《规划》对保障我国能源安全、应对气候变化和节能减排等具有重要作用,相关内容可为我国全面构建绿色低碳、安全高效的现代能源体系提供技术支撑,对推动能源革命,掌握核心关键技术话语权具有深远意义。

在水能发电技术方面,《规划》列出了3项重点任务。藏东南水电开发关键技术;水电基地可再生能源多能互补协同开发运行关键技术;水电工程健康诊断、升级改造和灾害防控技术。

二、水能科技发展的重大研究方向和技术挑战

我国水电工程建设能力和百万千瓦级水电机组成套设计制造能力领跑全球,水电工程建设技术已达到世界领先水平。然而,与引领能源革命的要求相比,水能科技创新仍存在一定差距。我国剩余水电资源主要集中在西部地区,尤其是青藏高原及其周边,水电开发面临着诸多挑战,同时,我国水电国际化发展也对水电行业高质量发展和技术创新提出了新的更高要求。

1. 重点开展藏东南水电开发重大技术问题研究

高坝坝基深厚覆盖层。藏东南水电开发位于高山峡谷高地震烈度区,存在超深厚覆盖层问题,坝基抗滑稳定、抗震安全、变形稳定和渗透稳定给我们提出了巨大挑战,采用振冲碎石桩对深厚覆盖层进行处理,试验已取得成功,但是造价非常高昂。

“十四五”期间,需要重点对深厚覆盖层的物理力学特性进行深入研究。传统的钻孔取样存在扰动,不能真实反映覆盖层物理力学特性。除钻孔外,应打一个沉井,开展现场原位试验,搞清楚坝基持力层的物理力学性能,这样可以准确分析评估抗滑稳定和地震液化。

高坝坝型选择。超深厚覆盖层上最适宜的坝型是砾石土心墙堆石坝,但是藏东南工程坝址区土料性状复杂,处理难度大、运距远,因此可与沥青心墙堆石坝方案进行技术经济比较,沥青心墙堆石坝方案存在的主要问题是对坝基变形适应能力较差,需要进行专题研究,另外需要研究沥青心墙坝对藏东南地区气候的适应性。

复杂地质条件下深埋大直径引水隧洞和超大型地下洞室群。深埋大直径引水隧洞宜采用TBM施工,但深埋隧洞地应力高,面临岩爆和大变形问题,同时超大型地下厂房需要布置数十台大型水轮发电机组,这样的工程规模前所未有,大型地下洞室群的稳定和厂房安全问题需要特别关注,应重点开展岩爆的预报和防治措施研究,还要预防复杂地质条件下涌水突泥等地质灾害。

超高水头大容量水轮发电机组。超高水头大容量水轮发电机组设计制造是引水发电系统最难的问题。分两条线路研究两种机组,分别是1000米级水头大容量冲击式和600米级水头大容量混流式。1000米级水头的冲击式水轮机,目前世界上最大42万千瓦,现在要做到70万千瓦,设计制造难度很大,而且每个厂房装几十台,布置难度也很大。混流式机组,我们现在能做到100万千瓦,但水头只有300米级,国外600米级混流式机组的最大单机容量35万千瓦,要做到70万千瓦难度也很大。混流式机组可借鉴抽水蓄能机组,抽水蓄能600米水头做70万千瓦单机是可行的。该领域研究要坚持自主创新与国际合作相结合。

环境影响。藏东南水电开发位于高山峡谷区,山坡陡峻,施工布置难度大,土石方开挖量巨大,如何选择合适堆渣点、保障堆渣稳定安全、实现堆渣绿化,避免造成次生灾害及对环境造成有害影响,也给我们提出了很大挑战,需要开展绿色施工新技术新工艺的研究。

2. 加强流域地质灾害监测预警和应急管理

我国已建成以澜沧江、金沙江、雅砻江、大渡河等为代表的流域梯级水库群,库岸稳定及流域地质灾害问题日益突出,亟须加强监测分析和应急管理,研究库岸空天地一体化的非接触式变形监测技术,逐步建立完善流域地质监测预警体系。

库岸变形监测对滑坡早期识别、分析评价、灾害防治及应急管理具有重要意义,但是传统监测方法难以适应大范围、连续、快速监测的要求。为此,我们提出了空天地多层次非接触式变形监测的总体思路:采用星载InSAR进行大范围普查,获取变形异常部位的大致范围;采用车/船/无人机载InSAR对库岸边坡进行区域巡查,确定重点部位;采用固定式InSAR进行重点核查和持续观测,获取重点部位重点时段的变形时序数据;特别重要部位进一步采用接触式安全监测方式进行长期观测。

后续应结合地质勘察成果、巡查成果、影像及各监测手段的数据等资料,研究提出滑坡预警指标;建立完善梯级库群岸坡安全监测手段与设施,采用5G、物联网、智慧计算等先进技术,集成监测数据收集处理、稳定性分析、预警预报、紧急应对预案为一体的梯级库群运行安全管理快速预警体系。

3. 全面推进水电工程智能化

西部高海拔地区水电工程普遍面临“地质条件复杂、施工条件恶劣、生态环境脆弱”等制约性问题,常规开发难度巨大。应充分应用“智能建造”新技术、新理念,研发应用先进的信息化、数字化、智能化技术,实现工程安全、高效建设和运行。

糯扎渡、溪洛渡、黄登、白鹤滩、乌东德等电站已在智能建设方面进行了有益尝试,但基本着重于“数字大坝”和“智能建造管控”,在工程智慧感知、无线传输、动态监控、各阶段数据融合、大数据分析、评价预警、决策支持等方面还存在很多不足。

当前国内水电工程建设正处于全面数字化、部分智能化的阶段。“十四五”期间工程建设和管理要向全面智能化发展。建议从智能规划设计、智能建设、智慧运行管控等全方位、全过程开展水电工程智能建设技术研究,并研究建立行业统一的信息化体系及标准。

4. 着力开展可再生能源多能互补技术研究

西南尤其是西藏地区后续水电开发成本高,单一开发水电经济性较差;通过水风光协同开发、多能互补,可打破各自为政的局面,并利用大型水电外送通道及水库调节性能,将风能、光伏发电等不稳定电能调节为稳定可靠电力,从而大幅提高电能质量和电力系统安全,同时可利用风电、光伏低成本优势,平抑水电上网电价,实现综合效益最大化。

建议以澜沧江上游、雅砻江等大型清洁能源基地为依托,攻克大型清洁能源基地水风光多能互补关键技术难题,提出多能互补成套技术体系,构建多能互补联合发电的协同优化调控系统,实现清洁能源高效消纳,保障电力系统安全,建成国家多能互补清洁能源示范基地。

5. 加强大型流域梯级水库环境监测及联合调度技术研究

根据“水环境安全保障,水生态持续改善,水资源综合利用”等生态文明发展需求,大型流域水电滚动开发形成巨型梯级电站水库群后,应从监测站网智能布控、深水分层高精度采样、原位实时监控分析、湖库健康评价指标、多库联动生态调度等方面着手,研究建立梯级深大水库水环境在线感知、数据挖掘、动态分析、智能评估、实时预警、联动调控等方法体系,形成引领国内流域梯级水库水环境实时动态监控、潜在风险事件提前预判预警和水资源综合利用高效调度成套技术,实现流域梯级水库水环境和水生态安全的“数字化、信息化、智能化”管理。

三、《规划》保障措施

根据《规划》提出的保障措施,我认为应重点做好以下几点工作:

一是进一步强化以企业为主体,以市场为导向,产学研相结合的技术创新体系。企业要主动发挥创新主体作用,构建产学研协同创新治理机制,培养产学研一体化的复合型创新人才,集中优势资源突破制约发展的关键核心技术。

二是积极将规划任务纳入中央预算内投资项目、科技创新2030重大项目、水能相关重点研发计划专项项目以及其他各类国家科技计划项目和地方科技计划项目,加强财政资金支持力度。

三是充分发挥国家能源水电工程技术研发中心、国家能源水能高效利用与大坝安全技术研发中心、国家水能风能研究中心等水电技术创新平台的技术引领和示范作用,进一步优化和规范上述平台的管理和考核评价,加大支持力度。   

顾大钊:推动氢能关键技术研发 助力能源低碳转型

“十四五”是能源技术革命的关键时期,也是推进“双碳”战略的重要窗口期。《“十四五”能源领域科技创新规划》(以下简称《规划》)提出了2025年前能源科技创新的总体目标,围绕先进可再生能源、新型电力系统、绿色高效化石能源开发利用等方面制定了技术路线图,部署了示范工程,与《“十四五”现代能源体系规划》等文件有机衔接,相互配合。《规划》就氢能制储输用全链条关键技术提供了创新指引,为氢能的示范应用和安全发展提供了重要指导。

一、氢能的定位和作用

氢能是未来国家能源体系的重要组成部分,是实现“双碳”战略的重要抓手,开发氢能先进技术和推动氢能产业化,也正在成为深入推进能源供给和消费革命的重要方向,其发挥的作用可以归纳为以下几点:

支撑新型电力系统建设。氢能既可以作为储能侧的“稳定器”,也可以作为用电侧的“燃料源”,是未来新型能源系统的重要补充。氢能可成为部分场景下相较于电力更优的脱碳选择,为能源转型提供更高的灵活转换能力。燃料电池热电联供综合效率高,是发展综合能源的重要技术手段。针对海岛、边防等偏远地区,可构建分布式电—氢耦合清洁供能系统,利用分布式电源制取氢气,利用燃料电池进行热电联供,满足用户多种用能需求。此外,固体氧化物燃料电池(SOFC)、熔融碳酸盐燃料电池(MCFC)可以直接使用碳基燃料,与现有能源供应系统兼容,在大中小型固定及分布式发电领域都有着广阔的应用前景;以氢气为能源、低温运行的质子交换膜燃料电池(PEMFC),在中重型交通、建筑脱碳领域则有广阔的发展空间。

推动难脱碳领域深度脱碳。在工业领域,钢铁、冶金、石化、水泥的生产过程中需要大量的高位热能,可利用绿色氢能燃烧热值高的特性,作为工业领域深度脱碳的重要抓手。在建筑领域,绿色氢能供热将成为未来天然气供热的替代。在现有天然气管道中掺杂氢气,可满足建筑领域供热需求,同时减少碳排放量,是氢能连接电网和天然气管网的重要途径,也是氢气大规模普及的重要渠道。在交通领域,主要包括道路、铁路、航空和船运这四种方式,在完善的电力基础设施和技术进步推动下,动力电池在道路交通上得到大规模应用,但动力电池特性不适用于重型道路交通和船舶、航空等场景,上述交通方式需要更多依靠氢能等方式满足脱碳需求。

氢基合成绿色燃料和材料。氢气可合成绿色燃料和材料,构建零碳工业产品体系。随着氢的能量属性逐渐被重视,作为替代高碳燃料应用于高热值场景的氢基能源,绿氢合成氨、甲醇、甲烷、煤油等载能燃料进行储运或综合利用成为产业热点,带动了传统火电、航运、航空等多个行业的基础设施再利用和深度脱碳。此外,绿氢与二氧化碳合成制取化工产品,提供大规模二氧化碳利用的机遇,有望成为重大颠覆性技术,对石油化工、煤化工体系产生革命性影响。

二、氢能的发展现状及建议

从产业层面来看,我国氢能及燃料电池已具备产业化发展基础。产业链企业超过1000家,已初步形成京津冀、长三角和珠三角等氢能及燃料电池产业集群,以分布式能源领域、移动通信基站以及城市客运、物流等商用车型为先导开展了规模化示范运行。从技术层面来看,经过4个五年国家科技计划的组织实施,我国燃料电池从电堆、系统到关键部件技术研发均取得一系列关键突破,形成了涵盖制氢、储氢、氢安全、燃料电池及整车应用等技术的产学研用研发体系。同时,氢能产业发展仍然面临诸多挑战。一方面,地方政府培育氢能产业链的积极性愈发高涨,但产业发展同质化苗头有所显现。另一方面,氢能产业处于产业化前夜,实现关键核心技术自主可控是推动我国氢能产业高质量发展、走向全球产业链中高端的必行之举。基于目前产业发展现状,现提出如下建议:

“先立后破”,逐步推动氢源结构低碳化。与化石燃料制氢相比,可再生能源制氢成本近期较高,考虑氢能应用经济性,“煤制氢+CCUS”、工业副产氢提纯将有效发挥过渡支撑作用,与可再生能源制氢技术将共同构成未来清洁化、低碳化、低成本的多元制氢体系。在多元化的供应格局中,技术发展程度取决于不同发展阶段的适用性、经济性、能源效率和环境效益。对于可再生能源制氢而言,重点是提升现有制氢装备技术水平以及规模化降本;对于化石能源制氢而言,重点是研发CCUS技术来控制碳排放;工业副产氢则应聚焦提纯技术,在近期应得到优先利用。从中长期看,加速推动可再生能源制氢规模化发展,降低可再生氢成本,逐步替代化石燃料制氢,是实现氢能可持续发展的应有之义。

加速推进核心技术、关键装备自主化。在核心技术、关键装备自主化过程中应坚持重点突破与协同推进相结合的原则,对于产业需求迫切、“卡脖子”现象严重、降本效益显著的技术与装备应予以重点突破,对于前瞻性技术、储备性技术、配套技术则协同推进。结合现有产业基础与需求,制氢领域应以可再生能源制氢为重点突破,攻关与可再生能源耦合负荷波动下电解水系统,探索多能互补可再生能源电解水最优容量配置,同时提升碱水制氢设备电流密度,综合提高和优化PEM制氢电耗、设备成本与寿命性能,协同推进副产氢提纯技术以及SOEC、光解水制氢、热化学循环制氢等前瞻性技术。储运领域近期需聚焦氢能短途运输密集、液氢民用开启与天然气掺氢示范三大发展趋势,攻克50兆帕压力等级长管拖车运输;降低氢气液化能耗、氢气液化成本和液氢制备与储运装置自主化以及管道运氢核心技术,协同推进轻质化固体材料、有机液态储氢等技术。加注领域以降低加注成本为核心目标,重点攻关氢气压缩机、70兆帕加氢机、传感器、流量计等核心零部件及整机的自主化,协同推进液氢储氢加氢站、制氢加氢一体站技术研发。燃料电池领域考虑多应用场景兼顾低温与高温燃料电池,长寿命PEM系统、关键零部件自主化、低载铂量催化剂开发;高耐久性SOFC电极材料、低成本量产技术,性能提升、集成优化设计;MCFC堆叠技术优化,百千瓦级功率放大是主要攻关目标。氢安全领域关键在于要着力加强氢能安全的基础理论研究,例如氢能设施与设备的材料适用性与相容性研究、氢泄漏的预防与监测技术研究、应急处置装备等。

完善顶层设计体系,促进产业健康有序发展。氢能纳入能源管理范畴,以推进氢能服务经济发展,同时加强安全监管。安全是氢燃料电池产业健康持续发展的命脉,从氢能使用的设计、制造、建设、生产、运行和维护各个环节都应有足够高的可靠性,包括人员的可靠性。

强化产业引导手段,准确把握氢能产业发展趋势,充分吸取国内风电、光伏以及新能源汽车发展的经验和教训。一是宜氢则氢、准确定位,确立清洁低碳和灵活高效的氢能技术发展布局。基于氢能在能源转型与“双碳”目标下的发展定位以及技术发展现状,我国氢能产业发展必须紧紧围绕上述氢能的核心优势领域,重点布局氢能与可再生能源协同发展、工业清洁化生产以及基于燃料电池技术的交通运输动力系统。二是把技术水平作为制定氢能发展路径的依据。在氢能产业发展的初期阶段,坚持“示范先行”原则,在基于技术自主可控的前提下推动燃料电池汽车示范应用上,探索开展制氢示范、装备技术研发示范,并结合各地资源禀赋设立综合发展示范区,逐步在制氢、储能、氢冶金、绿色化工等其他应用领域开展示范,按照成熟一个、推进一个的原则以点带面地推动多领域示范推广应用,带动全产业链技术进步与产业规模化、商业化发展,以避免产业链重复建设和无序发展。

(转自《中国电力报》 作者均系中国工程院院士)

为您推荐